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Executive Summary 

The demand for information traffic has risen significantly in recent years, leading to the so-called “capacity 

crunch” in optical fiber. Nonlinear frequency-division multiplexing (NFDM) has been proposed to help 

increase transmission rates. This method is similar to the frequency division multiplexing, where Fourier 

transform is replaced with the nonlinear Fourier transform (NFT). The NFT is based on the key observation 

that there is a linear operator associated with the propagation equation whose spectrum is invariant during 

propagation. However, a number of important challenges lie ahead of bringing NFT-based communications 

out of the labs and into operating in real-world systems. For instance, computing NFT efficiently and 

accurately at high powers is challenging. A variety of approaches have been proposed to address these 

challenges and improve NFDM. We, however, consider a machine learning approach to compensate 
nonlinearity in fiber-optic communications. 

In this deliverable, after reviewing the current deep learning trends in fiber-optic communications, we 

consider the equalization in point-to-point long-haul dispersive fiber-optic communication systems using 

chromatic dispersion compensation, digital back-propagation, multilayer perceptrons (MLPs), convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), and a proposed neural architecture. We discuss 

the experimentation results of these solutions and the gain of our proposed approach.  It is explored that 

with lower complexity, the proposed model achieves the BER of the state-of-the-art CNN approach and DBP. 
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1 Introduction

Stochastic nonlinear Schrödinger (NLS) equation models signal propagation in single-mode optical fiber with
distributed amplification. This equation can be normalized as [1, Eq. 3]

j
∂q

∂z
=
∂2q

∂t2
+ 2|q|2q + n(t, z), (1)

where q(t, z) is the complex envelope of the signal, as a function of time t and distance z, and n(t,z) is zero-mean
white circular symmetric complex Gaussian noise.

Nonlinear frequency-division multiplexing (NFDM) consists of three steps in both transmitter (TX) and re-
ceiver (RX). For a multi-user system with Nu users, each sending Ns symbols, total (linear) bandwidth B Hz,
and (total) average power P , NFDM, firstly, computes

u(τ, 0) =
√

2

Nu
2 −1∑

k=−Nu
2

Ns
2 −1∑

k=−Ns
2

skl φ(τ`− T0)ej2πkW0τ (2)

where φ(t) is a root-raised-cosine function with the bandwidth W0 Hz and the roll-off factor r. τ is the generalized
time in Fourier transform relation with the generalized frequency λ ∈ R. T0 = 1/W0, and {skl }l are symbols of
user k chosen from a constellation Ξ . In the second phase, NFDM calculates the transmit signal in the nonlinear
Fourier domain as follows:

q̂(λ, 0) = (e|U(λ,0)|2 − 1)
1
2 ej∠U(λ,0). (3)

In (3), U(λ, 0) = 1√
2
F(u(τ, 0)), where F denotes Fourier transform. This process is followed by the final operation

q(t, 0) = INFT(q̂(λ, 0)). 1

Although NFT is a novel transmission method paving the way for the advancement of new modulation and
multiplexing methods in optical fiber communication, it faces a number of limitations in practice. One obstacle is
the implementation penalty owing to distortions introduced by hardware components. Furthermore, computing
NFT efficiently and accurately at high powers is challenging.

As alternative solutions, neural network based receivers [4–11] and end to end deep learning of communication
systems [12–14] are emerging fields addressing the nonlinearity problem in optical fiber communication via a deep
learning approach. In the following sections, we discuss these areas.

2 Learning by neural networks

Neural networks are the enablers of deep learning owing to their ability to capture the complex input-output
correlations and mathematical structures in the presented data. Neural networks are hierarchically organized into
groups of basic processing units or neurons.

In a general grouping, based on the scheme that information propagate fro the input layer to the output,
neural networks are categorized into groups:

• Feed-forward Neural Networks (FNNs). In FNNs each neuron is only linked to the neurons in the next
layer. Thefore, the information only propagates forward from the input layer to the output without any
feedback loop.

• Recurrent Neural Networks (RNNs). In contrast to FNNs, there exists feedback links in RNNs and
therefore the information can also be passed to the previous layers in the network via feedback links.

Although these two categories are different in architecture, for both of them the back-propagation algorithm [15]
is used for the training process to find the best set of weights. In back-propagation algorithm, the error is calculated
at each iteration t and then it is back-propagated to the preceding layers in order to adjust their weights by the
gradient descent as

Wt+1 = Wt − α∆L̂(Wt), (4)

1The achievable rates of the linear and nonlinear FDM are compared in [2] and [3] for normal dispersion and anomalous dispersion
fiber, respectively.

c© FONTE consortium 2018-2022 Dissemination Level: Public Page 6
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where L̂ is the calculated resulting loss caused by the current weights, ∆L̂ is the gradient of L̂, and α > 0 is the
learning rate.

Multi-layer perceptrons (MLPs), also called dense neural networks, and convolutional neural networks (CNNs)
are the two main architectures in the category of the FNNs. These two architectures were discussed in the
deliverable D4.2, thus we do not explain them in this document again. In the following subsection the RNN
architecture is briefly described.

2.1 Recurrent neural networks

The RNNs are developed to operate on the temporal sequences of data with correlated samples. In RNNs, the
links between the nodes forms a loop, thus the information does not merely propagate forward. An RNN consists
of recurrent layers composed by recurrent cells. A recurrent cell state is influenced by the current input as well as
the past (and the next) states via the feedback connection. The general mathematical expression of a recurrent
cell is as follows:

ht = σ(whht−1 + wxxt + b) (5)

yt = σ′(ht) (6)

where xt, yt, ht are respectively, the input, the output, and the hidden state (the recurrent information) of the
time step t, t = 1, 2, · · · . Also, wh, wx, b denotes the weight matrix for the recurrent state, the weight matrix for
the input state and the bias vector shared among all the recurrent cells. σ(.) and σ′(.) are two different activation
functions.

The recurrent cell discussed above is called Simple RNN cell. There are variations of this format as well. The
two primary variations are Long-short-term-mermory (LSTM) [16] cell and Gated recurrent unit [17] (GRU) cell.
The detail of these variations is out of the scope of this document.

Different forms of RNNs can be designed by arranging the recurrent cells in different formats. Therefore an
RNN is mainly characterized by the recurrent cell structure and their arrange (network format) [18]. The main
RNN network formats are many-to-many (or seq2seq), many-to-one (many inputs, one output), and one-to-many
artictectures. The input of the many-to-many format is a sequence of data and its output is also a sequence of
data. The input of the many-to-one format is a sequence of inputs but the output is a single value (the output
of last recurrent cell). In contrast, in the one-to-many format, the input is a single value and the output is a
sequence of data.

In the field of neural based receiver for optical fiber communication systems the goal is to design the most
accurate (in terms of bit-error-rate) and efficient neural network (in terms of performance-complexity trade-
off) capable of equalizing the channel effects such as chromatic dispersion, Kerr-nonlinearity, polarization mode
dispersion, etc [19]. For example, [20] uses an MLP to perform equalization in a 200 Gbps DP-16QAM optical
transmission system for distances 100km to 400 km. This approach has reported a Q-factor gain of 0.5 dB to 1
dB compared to linear equalization. [4] uses an MLP to equalize the received waveform in the nonlinear Fourier
domain. This approach has demonstrated a six-times BER improvment compared to absence of a NN-equalizer
for a 1000km fiber.

[5] and [21] use an RNN for equalization with focus on nonlinear and intra-channel effects mitigation, showing
that RNN based transcrivers outperms the MLPs. [6–8] has proposed an CNN based for classification of different
PAM classes based on the received signal as input. [9–11] also has proposed a CNN approach, but their model is
based the computational graph generated by SSFM. By this technique, termed learned DBP (LDBP), they have
succeded in achieving the BER of DBP [22] with almost 50% lower complexity.

3 End to end deep learning of communication systems

End to end learning of communication systems for optical fiber channels has gained attention recently [23].
The purpose of this approach is to learn full transmitter and receiver implementations optimized for a certain
channel model given a specific objective performance measure. In this approach, the transmitter and receiver are
implemented by neural networks and the systems is interpreted as an autoencoder [24, Ch. 14]. The schematic
representation of the system is illustrated in Fig. 1. In this figure, m = (m1, ...,mN ) is a sequence of bits. The
neural transmitter maps this sequence to the sequence of symbols {Si}n1 . Then they are pulse shaped with the

c© FONTE consortium 2018-2022 Dissemination Level: Public Page 7
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Fig. 1. Schematic representation of an autoencoder for optical fiber communication systems

filters {φi(t)}n1 to form the transmitted signal x. At the RX, the neural reciver try to recover m but processing
the received signal y as input.

However, although end-to-end learning of communications systems [12], is theoretically an interesting idea,
the practicability of it is in doubt. This is in view of the fact that this method requires the channel model to be
differentiable [25]. More clearly, the gradient of the instantaneous channel transfer function has to be precisely
known. For an actual system, this is quite rarely feasible as the channel is generally a black box for which
only inputs and outputs can be observed. In addition, the channel typically contains certain components of the
transceiver, such as quantization, which are non-differentiable and therefore prevent gradient-based training via
backpropagation [26].

One proposed solution is to assume a common channel model, e.g., a Gaussian model. The idea is to first
learn on the basis of this generic model and then refine the receiver, i.e., the weights of the decoding component
of the NN, according to the received signals. This strategy has been discussed in [27].

Using generative adversarial networks (GANs) [28] is another proposed approach [29], [30] to mimic the channel.
In the following subsection, we discuss the general of idea GANs.

3.1 Generative adversarial networks

GANs are algorithmic architectures consists of two opposing neural networks, a generative NN and a discriminative
NN. In general, a discriminative NN learns the boundary between classes, and a generative NN models the
distribution of individual classes. To put it simply, discriminative NNs map features to labels while generative
NNs capture the probability of features given a label or category. In GANs, these two components, let’s call
them G and D, compete against each other so that the GAN generates new, synthetic instances of data that can
not be distinguished from real data. In this algorithm, G captures the data distribution, and D estimates the
probability that a sample came from the training data rather than G. The training objective of G is to maximize
the probability of D making a mistake [28], and the training objective of D is to maximize the probability of
detection when a data came from G. This framework corresponds to a minimax two-player game, with value
function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x)
[logD(x)] + Ez∼pz(z) [log(1−D(G(z)))], (7)

where z is the generated data. According to the Nash’s Theorem this framework has at least one solution (Nash
equilibrium) [31].

In [29] and [30], GANs are utilized to generate an artificial channel model that approximates the actual channel
distribution and thus can be used for autoencoder training.

Addressing the mentioned challenge of the autoencoder idea via a reinforcement learning (RL) solution is
another approach to the problem [32], [33]. The principles of these solutions and RL and is elaborated in the
following subsection.

3.2 Reinforcement learning

Reinforcement learning is about an agent interacting with the environment to learn an optimal policy for sequential
decision-making problems, by trial and error. Trial-and-error learning is associated with so-called long-term

c© FONTE consortium 2018-2022 Dissemination Level: Public Page 8
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rewards. In RL, the algorithm (agent) analyses the current situation (state), makes a decision, and receives
feedback (reward) from the environment. Positive feedback denotes a reward, and negative feedback denotes a
punishment due to the wrong decision. The main objective of RL is to determine the best sequence of decisions
that will enable an agent to solve a problem while optimizing long-term rewards [34, Ch. 1]. This is carried out
via the following process.

At each time step t, the agent receives a state st in the state space S and selects an action at from the action
space A, according to the policy π. A policy is a mapping from states to probabilities of selecting each possible
action, together with their associated rewards. In the event of an episodic problem, this cycle proceeds until the
agent enters the terminal state, where it restarts. The return (accumulated reward) of a policy for the state st is
calculated as

Rt =

T∑
k=0

γkrt+k, (8)

where T is the time of termination, and rt is the reward of the action at time step t, based on the policy. γ ∈ [0, 1)
is the discount factor. The goal of the agent is to maximize the expectation of the return from each state. This is
performed by estimating the value function. The value function measures the expected return for a state under
a policy. Therefore, mathematically, the value of a state s under a policy π, denoted by vπ(s), is defined as

vπ(s) = Eπ[Rt|st = s] = Eπ

[
T∑
k=0

γkrt+k|st = s

]
. (9)

Similarly, the value of taking action a at state s under policy π, is defined by the action-value function for policy
π as

qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ

[
T∑
k=0

γkrt+k|st = s, at = a

]
. (10)

A foundational property of the value functions in RL is that for any policy π and any state s, the following
consistency condition holds between the value of s and the value of its possible successor states [34, Ch. 3]

vπ(s) = Eπ[Rt|st = s]

= Eπ[rt+1 + γRt+1|st = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Rt+1|st+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] ,

(11)

where π(a|s) denotes the probability that at = a if st = s, under policy π.
Solving a RL task means finding the optimal policy π∗, whose expected return for all the states is higher

than or equal to all the other policies. Optimal policies have the same state-value function, called the optimal
state-value function. This function is defined as v∗(s) = maxπ vπ(s) for all s ∈ S. Optimal policies also have the
same optimal action-value function q∗(s, a) = maxπ qπ(s, a) for all s ∈ S and a ∈ A. A(s) is the set of all available
actions for the state s. Therefore,

q∗(s, a) = Eπ[Rt+1 + γv∗(st+1)|st = s, at = a]. (12)

According to the Bellman optimality equation [35] and by (12),

v∗(s) = max
a∈A(s)

q∗(s, a)

= max
a

Eπ[Rt+1 + γv∗(st+1)|st = s, at = a]

= max
a

∑
s′,r

p(s′, r|s, a) [r + γv∗(s
′)] .

(13)

Various solutions have been proposed to achieve π∗ through iterations of policy improvement, the prominent
of which are Q-learning [36], policy gradient [37] , DQN [38], and DDPG [39]. The policy improvement process
finishes when v∗ is reached [34, Ch. 4], which is the case when

c© FONTE consortium 2018-2022 Dissemination Level: Public  Page 9
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Fig. 2. Schematic representation of the implemented optical fiber communication systems with the NN-based
receiver

TABLE 1. Fiber parameters

nsp 1 spontaneous emission factor

α 0 km−1 fiber loss

γ 1.27 W−1km−1 nonlinearity parameter

β2 2.167× 10−23 s2km−1 2nd-order dispersion coefficient

σ2
0 5.906× 10−14 Wkm−1Hz−1 noise PSD

∀ s ∈ S, @ a ∈ A(s) [(a 6= π(s)) ∧ (qπ(s, a) > vπ(s))] . (14)

[32], [33] has used RL through a policy gradient approach for autoencoder training. In this approach, the
transmitter is regarded as an agent whose actions are the transmitted signals. Therefore, the transmitter is op-
timized through the process of receiving rewards via a feedback link connected to the actions. However, as a
matter of fact, as it is apparent from what was discussed, RL is famous for being data-hungry, the overload of
states, subject to instability in the learning process, and a laggard in terms of performance [40]. In consequence,
although this approach is theoretically very interesting, the viability of it is intractable for real communication
systems.

4 Research and Experiments

The research field of neural based receivers was followed. We assumed a single-mode single-polarization point-to-
point optical fiber communication system, shown in Fig.2, whose fiber is modeled by NLS equation

∂q(t, z)

∂z
= −jβ2

2

∂2q

∂t2
+ jγ|q(t, z)|2q(t, z) + n(t, z), 0 ≤ z ≤ L. (15)

Here, q(t, z) is the complex envelope of the signal propagating in fiber as a function of time t and distance z, β2 is
chromatic dispersion coefficient, γ is the nonlinearity parameter, L is fiber length and n(t, z) is zero-mean white
circularly symmetric complex Gaussian noise with the power spectral density σ2. We implemented NLS equation
using split-step Fourier method (SSFM). The fiber loss was presumed to be perfectly compensated by distributed
Raman amplification.

In this system, the transmitter takes a sequence of bits m = (m1, ...,mN ), where (m2i,m2i+1) ∈ {(0, 1), (1, 0)},
i = 0, . . . , N/2, maps it to a sequence of symbols drawn from a quadrature amplitude (QAM) constellation, and
modulates them using the pulse-amplitude modulation (PAM)

q(t, 0) =

∞∑
i=−∞

Sip(t− iT ), (16)

At the receiver, a neural equalizer and detector takes q(t,L), denoted by y in the figure, and recovers the sequence
of bits m, denoted by m̂.

The system was set based on 16-QAM transmission at 25 Gbaud using RRC pulses (roll-off factor 0.1), and
with the fiber parameters mentioned in Table. 1.

c© FONTE consortium 2018-2022 Dissemination Level: Public Page 10
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(a) 500km at 8SpS (b) 500km at 4SpS

(c) 500km at 2SpS (d) 500km at 1SpS

Fig. 3. The BER of the equalizers for the 500 km fiber-optic link, as a function of SNR for several values of
sampling rates at RX and DBP step size.

We considered channel equalization in this system using chromatic dispersion compensation (CDC), digital
back-propagation DBP (with step sizes 1km, 50km, 100km), MLPs, and the state-of-the-art CNN approach [11].
All models were created and trained using Tensorflow [41] in python. The BER performance of these approaches
as a function of SNR, and simulation step size (for DBP), for a 500km, 1000km, and 2000km fiber-optic link, is
illustrated in Fig.3, Fig.4, Fig.5, respectively.

Following the implementation of the methods in the literature review, we contemplated a neural network based
equalizer model achieving roughly the BER performance of the state-of-the-art CNN approach and DBP with
lower number of parameters and memory requirement for training. This model was based on the idea that although
CNNs are powerful in capturing short temporal-distance features, they may not efficiently capture long-distance
features. The details of this approach is confidential at the moment of writing this document.

Appendix

As discussed, although end-to-end deep learning of communications systems is theoretically an exciting idea, it
faces some critical challenges regarding the channel transfer function. In this regard, during our research we also
discerned a deep representation learning method that instead of learning the channel, learns the structure of the
sequence of symbols that incurred the minimum damage while passing the channel. This structure will then try

c© FONTE consortium 2018-2022 Dissemination Level: Public Page 11
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(a) 1000km at 8SpS (b) 1000km at 4SpS

(c) 1000km at 2SpS (d) 1000km at 1SpS

Fig. 4. The BER of the equalizers for the 1000km fiber-optic link, as a function of SNR for several values of
sampling rates at RX and DBP step size.

to be transferred to the sequence of symbols at TX to vaccinate them against error throughout the channel. That
is to say, the content is preserved, but the pattern is taken to the pattern of Superior set S in which there are
sequences of symbols that were resilient against channel errors.

The detail of this approach is confidential at the time of writing this document. But To briefly discuss the
general mathematical idea, the pattern similarity can be able to be measured by the cosine similarity of the
featurized representation (embedding) of the input sequence x and the samples in S as follows:

Similarity(x,S) =
1

|S|
∑
s∈S

x.s

||x||||s||
=

1

|S|
∑
s∈S

∑n
1 xisi√∑n

1 x
2
i

√∑n
1 s

2
i

. (17)

The resulting similarity varies in the interval [−1, 1]. -1 denotes totally opposite, 1 denotes completely the same,
0 indicates orthogonality or decorrelation, and in-between values indicate intermediate similarity or dissimilarity.
The content similarity could be obtained by measuring the mutual information of the random variable of the
output sequence Y and the random variable of the input sequence X:

I(X;Y ) =

∫
y∈Y

∫
x∈X

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
dxdy, (18)

where PXY (x, y) is the joint probability distribution and PX(x) and PY (y) are the marginals. In the discrete

c© FONTE consortium 2018-2022 Dissemination Level: Public Page 12
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(a) 2000km at 8SpS (b) 2000km at 4SpS

(c) 2000km at 2SpS (d) 2000km at 1SpS

Fig. 5. The BER of the equalizers for the 2000km fiber-optic link, as a function of SNR for several values of
sampling rates at RX and DBP step size.

domain we have

I(X;Y ) =
∑
y∈Y

∑
x∈X

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)

= DKL(PXY ||PXPY ) = EPXY
log

PXY
PXPY

,

(19)

where EP is the expected value over the distribution P . We know PX(x) =
∑
y PXY (x, y) and PY (y) =∑

x PXY (x, y).
The idea is to push the pattern similarity of the sequence at RX to S while maintaining a high content

similarity to its original form.
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