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Executive Summary 

Nonlinear frequency-division multiplexing (NFDM) has been introduced to address nonlinearity in optical fiber 

communication. This approach is a signal multiplexing scheme based on the nonlinear Fourier transform (NFT). 

Problematically, the computational complexity of the inverse nonlinear Fourier transform (NFT), typically 

conducted by integral equations, is high. This makes it hard, in multi -user nonlinear optical fiber 

communication, to perform both nonlinear modulation and multiplexing. A varie ty of approaches has been 

proposed to enhance NFDM to address this problem. We, however, consider a machine learning approach to 

tackle the nonlinearity problem in optical fiber communication. 

An end to end communication system was simulated. The equalizer at the receiver, which was based on 

Backpropagation (BP) algorithm, was targeted to be optimized, as BP has high complexity. A  neural network 

(NN) was succeeded to be devised that approximates the high-complexity BP, with the accuracy of 99.9% in 

noiseless condition, while having 87.3% lower complexity. This NN equalizer also works well in noisy 

environments. In this article, after providing a brief background on machine learning and neural networks, we 

elaborate on this NN equalizer and analyse the results. We also discuss how machine learning can enhance the 

achievable information rate of fiber-optic communication systems by reducing the receiver complexity.   
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1. A  BRIEF BACKGROUND ON MACHINE LEARNING AND NEURAL NETWORKS 

Machine learning (ML) is a field of artificial intelligence trying to find a sort of algorithms that enables systems 

to learn and advance from past experiences without the need to be explicitly programmed [ 1]. These algorithms 

start with observations or data in a vector space 𝐸 to finally output a determination or prediction in the same 

or another vector space 𝐾. ML algorithms are commonly categorized as supervised or unsupervised. 

In supervised learning, the vector space 𝐸 of all possible inputs and and the vector space 𝐾 of all possible 

outputs and all the known ground truth input-output pairs (𝑥𝑖 ,𝑦𝑖) are taken first. Then the algorithm seeks the 

best function, 𝑓: 𝐸 → 𝐾 ,  predicting the output 𝜆 ∈ 𝐾  for an input 𝑥 ∈ 𝐸.  The  qual ity metric of  this 

function is based on a loss function, 𝐿(𝑌, 𝑓(𝑋)),  to penalize error in the prediction , where 𝑋 ∈ 𝐸 and 

𝑌 ∈ 𝐾 are  random variables , and 𝑌 i s ground truth. Several di fferent loss functions can be considered 

as a metric. Some of  these functions are  l i sted in Table 1. Howe ver, so far,  the most common loss 

function is squared error loss:  𝐿(𝑌, 𝑓(𝑋)) = (𝑌 − 𝑓(𝑋))
2

. The loss function produces a cri terion for 

choosing 𝑓,  cal led expected prediction error (EPF) or cost function. In case of choosing squared error 

loss [2, Ch. 2.4] , 

𝐸𝑃𝐸(𝑓) = 𝐸 [(𝑌 − 𝑓(𝑋))
2

] 

= ∫[𝑦 − 𝑓(𝑥)]2Pr (𝑑𝑥, 𝑑𝑦). 

By conditioning on 𝑋, EPF can be written as 

𝐸𝑃𝐸(𝑓) = 𝐸𝑋𝐸𝑌|𝑋 ([𝑌 − 𝑓(𝑋)]2 | 𝑋). 

Hence, it suffices to minimize EPF pointwise: 

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝐸𝑌|𝑋([𝑌 − 𝑐]2 | 𝑋 = 𝑥). 

This yields the solution 

𝑓(𝑥) = 𝐸(𝑌|𝑋 = 𝑥), 

the conditional expectation, also known as the regression function. Therefore, when the optimal solution 

metric is the mean squared error, the conditional mean is the best prediction of 𝑌 at any point 𝑋 = 𝑥.  

Neural networks (NNs) is a branch of supervised learning which attempts to figure out (4), or any function 

leading to the minimum EPF, by performing a sequence of forward and backward propagation over training 

samples. The idea of neural networks was firstly proposed in 1943 [3], and have been going in and out of fashion 

for more than 70 years. However, thanks to recent remarkable advances in this field, that we will discuss later 

in this article, NNs has again dramatically come on the scene [4], and it has widely been adopted by different 
fields of study to obtain better results [5]-[7]. Deep learning (DL) is in fact, just a new name for neural networks.  

Neural networks usually are arranged in interconnected layers. Each layer consists  of a number of nodes called 

hidden units containing an activation function. Training samples are provided to the NN through the input layer, 

passing them to the hidden layers where the actual processing is done via a system of weighted connections 
[8, Ch. 1]. Finally, the answer is provided as the output of the output layer.  

 

(1) 

(2) 

(3) 

(4) 
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Table 1. Some of commonly used loss functions 

 𝐿(𝑌, 𝑓(𝑥)) 

Mean Square Error (MSE) 
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑛

𝑖=1   

Mean Absolute Error (MAE) 
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))𝑛

𝑖=1   

Root Mean Square Error 
(RMSE) 

√
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑛

𝑖=1   

Cross Entropy Loss −
1

𝑛
∑ [𝑦𝑖𝑙𝑜𝑔(𝑓(𝑥𝑖)) + (1 − 𝑦𝑖)𝑛

𝑖=1 (1 − 𝑙𝑜𝑔(𝑓(𝑥𝑖)))]  

Huber loss* 
1

𝑛
𝐿𝛿 (𝑦𝑖 ,𝑓(𝑥𝑖)), 𝐿𝛿 (𝑦𝑖, 𝑓(𝑥𝑖)) = {

1

2
(𝑦𝑖 − 𝑓(𝑥𝑖))

2
, 𝑖𝑓 |𝑦𝑖 − 𝑓(𝑥𝑖)| < 𝛿 

𝛿|𝑦𝑖 − 𝑓(𝑥𝑖)| −
1

2
𝛿2,                     𝑜. 𝑤.

  

 

The activation function of a node, 𝜎(. ), applies a nonlinearity to it. This is to address the so-called expressive 

power of the neural network [9]. By this means, the neural network functional form matches the hierarchical 

or Markovian structure. Most data of the practical interest is generated by some form of these processes [4]. 

A number of routinely used activation functions are listed in Table 2. 

Most of the neural networks obey some kind of learning rule, which continually corrects the weights of 

connections based on the computed final loss of the presented batch of training samples. A correction is done 

after a cycle of forward activation flow of outputs and backward propagation of error, called backpropagation. 

Backpropagation performs a gradient over the vector space K towards the global/local minimum producing the 

steepest descent along the error surface [10].  Simply speaking, a neural network initially sets its weights 

randomly, and based on the presented input, it sees how far its guess is from the ground truth. Then based on 

the result, it performs the correction through a backward propagation of the computed error. 

There are different types of neural networks, among well-known of which, one can list: multi-layer perceptron 

(MLP) [9], convolutional neural network (CNN) [9], recurrent neural network (RNN) [11, Ch. 10], and generative 

adversarial neural network (GAN) [11, Ch. 16]. In the following subsections, we very briefly review the MLPs 

and CNNs (RNNs and GANs are out of the scope of this article). 

Table 2. Routinely used activation functions in neural networks 

 𝑔(𝑧) Derivate: 𝑔’(𝑧) 

Sigmoid 
1

1 + 𝑒−𝑧 𝑔(𝑧)(1 − 𝑔(𝑧)) 

Tanh (Hyperbolic Tangent) 
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧  1 − 𝑔(𝑧) 2
 

ReLU (Rectified Linear Units) max (0, 𝑧) {
1, 𝑧 > 0
0,            𝑜. 𝑤.

 

ELU (Exponential Linear Unit)* {
𝑧,                   𝑧 > 0
𝛿(𝑒𝑧 − 1),     𝑜. 𝑤

 {
1, 𝑧 > 0
𝛿𝑒𝑧 ,        𝑜. 𝑤.

 

                                                                 
* 𝛿 > 0 is an arbitrary constant. 
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1.1. MULTI-LAYER PERCEPTRON 

What was just discussed is exactly true for MLPs. An MLP is a stack of interconnect layers on top of each other 

over a system of weighted connections. MLPs are in the category of feed-forward neural networks wherein 

connections between the nodes do not form a cycle [11, Ch. 6].  Each layer 𝑗 with 𝑁𝑗 hidden units performs the 

mapping 𝑅(𝑗) : ℝ𝑁𝑗−1 × ℝ𝑁𝑗−1×𝑁𝑗 →  ℝ𝑁𝑗  on the output of the previous layer, using the weights, as parameters, 
and the activations of the nodes. If we denote 𝐼 as the input of MLP and 𝑂 as the output, then 

𝑂 = 𝑅(𝐼, 𝑊) = 𝑅𝐿−1(𝑅𝐿−2(…𝑅1(𝐼1,𝑊1) … , 𝑊𝐿−2 ), 𝑊𝐿−1), 

where 𝑊𝑗 is the weights matrix of the input connections to the layer 𝑗. 

To find the best set of weights, at the end of each iteration 𝑡, the final loss/error is computed, and through a 

process of backpropagation, the error is propagated to the previous layers so that they update their weights 

by gradient descent according to 

𝑊𝑡+1 = 𝑊𝑡 − 𝛼∇𝐿̂(𝑊𝑡), 

where 𝛼 > 0 is the learning rate, and 𝐿̂ is the estimated loss based on the current weights.  

A schematic diagram of an MLP with two hidden layers is illustrated in Fig. 1. 

 

Fig. 1. The schematic diagram of an MLP, receiving an array of 6 cells, with 2 hidden layers having 4 and 3 hidden units, respectively. 
The NN outputs a single value at the end. 

1.2. CONVOLUTIONAL NEURAL NETWORKS 

CNNs are like MLPs with a number of intermediate convolutional layers. The idea of CNN was originally 

proposed for efficient learning in 2D images [11, Ch. 9]. Convolution layers apply a convolution via a kernel over 
the input: 

𝐼(𝑡) ∗ ℎ(𝑡) =  ∫ 𝐼(𝑘)ℎ(𝑡 − 𝑘)𝑑𝑘 

where 𝐼 is the input and ℎ is the kernel. As in the digital world, values are discrete, (7) turns to: 

𝐼[𝑛] ∗ ℎ[𝑛] = ∑ 𝐼[𝑘]ℎ[𝑛 − 𝑘] 

By this means, a CNN is able to profitably capture the spatial and temporal dependencies in the data by 

adopting the relevant, suitable kernels/filters. Using convolution, CNNs also highly reduce the dimension of 

data to streamline the underlying computation. This is usually done by pooling layers or by increasing the stride. 

(5) 

(6) 

(7) 

(8) 
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This feature of CNNs is their primary point of attraction over MLPs in optical fiber communication research. In 

the next section we discuss the application of neural networks in optical fiber communication.  

2. APPLICATIONS OF NEURAL NETWORKS IN OPTICAL FIBER COMMUNICATION 

Thanks to the recent impressive advances in the field of neural networks, NNs have recently been integrated 

into numerous approaches to various problems in different areas of study. These advances have resulted in a 

highly faster convergence rate of the NN, using efficient optimization algorithms, e.g., Adam [12]; and 
extremely higher robustness against overfitting via well-planned regularization schemes, e.g., Dropout [13]. 

The field of optical fiber communication has not been exempt from this fact. A variety of papers on the topic 

of applications of neural networks in optical fiber communication have been published [14]-[16]. Generally 
speaking, these papers, based on their purpose, can be divided into three groups: 

a- NNs to reduce complexity [17]-[19]. The approach of this group of papers is based on the fact that most 

of the real-world data is generated by some form of hierarchical or Markovian process, and deep NNs 

perform well because their functional form matches these structures [4]. The goal of this group of 

approaches is to find an NN modeling the current in use function well.  

b- NNs to reduce error [20]-[21]. This sort of papers looks for the mechanisms that boost the accuracy of 

the NN approaches by reducing the bit error rate. 

c- NNs to achieve both mentioned goals by developing a fundamentally new approach in designing 

communication systems [14], [23], [24]. This kind of approaches look for an auto-encoder which tries 

to learn representations x of the messages ‘m’ that are robust concerning the channel impairments 

distorting x to y (i.e., noise, fading, distortion, etc.), so as to the transmitted message can be recovered 

with low error probability. Put another way, instead of removing redundancy from the input data to do 

compression, this auto-encoder usually adds redundancy to it by learning an intermediate 

representation robust to channel perturbations [9].  

Among the mentioned group above, motivations in groups a and b are more pragmatic. To elaborate on this 

set of motivations, let us bring up our recent research and experimentation, as an instance. It is known that the 
signal evolution, 𝑞(𝑡, 𝑧), in a lossless optical fiber obeys nonlinear Schrödinger (NLS) equation [25]: 

𝑗
𝜕𝑞

𝜕𝑧
=

𝜕2𝑞

𝜕𝑡2 + 2|𝑞|2𝑞 + 𝑛(𝑡, 𝑧), 

where 𝑛(𝑡, 𝑧) is (zero-mean) white circular symmetric complex Gaussian noise; and 𝑡 and 𝑧 denote time and 

distance, respectively . It has been shown that NLS can be computed by the split-step Fourier method [26].  

Therefore, the inverse of SSFM can be used as an equalizer at the receiver. This algorithm is called 

Backpropagation (BP) algorithm [27]. Yet SSFM has very high complexity due to having to iterate recursively 

over fiber segments (see D. 4.1 [28], page. 12): 

𝑞(𝑧𝑘+1) =  ℱ−1𝐷𝐿ℱ𝐷𝑁 𝑞(𝑧𝑘) + 𝑛(𝑧𝑘+1). 

where ℱ is the Fourier transform, 𝑞(𝑧𝑘) is the 𝐿 × 1 length-vector of sample values 𝑞(𝑧𝑘 , 𝑡𝑙), 𝑙 = 0,1, … , 𝐿 −

1, at position 𝑧𝑘, and 𝑛 is the Gaussian noise 𝐿 × 1 length-column-vector. 𝐷𝑁 is a diagonal matrix with entries: 

𝑒𝑗𝛾 |𝑞(𝑧𝑘,𝑡𝑙)|2∆𝑧 ,𝑙 = 0,1, … , 𝐿 − 1, 

(9) 

(10) 

(11) 
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Fig. 2. The schematic diagram of the simulated end-to-end communication system. 

where 𝛾 is the nonlinearity parameter. 𝐷𝐿 is a diagonal matrix with entries: 

𝑒
−𝑗(

𝛽2
2

)𝑙2/(𝐿∆𝑡)2∆𝑧
,𝑙 = 0,1, … ,

𝐿

2
− 1, 

𝑒
−𝑗(

𝛽2
2

)(𝐿−𝑙)2/(𝐿∆𝑡)2∆𝑧
, 𝑙 =

𝐿

2
, … , 𝐿 − 1, 

where 𝛽2 is the dispersion parameter. 

This leads BP to have high complexity. Now, if an NN approximating BP via a lower compl exity is devised, it 

leads communication systems to have a higher achievable rate, in practice. Because the receiver can process 
the received data faster, and therefore, there is potential to input more data to the channel.   

This has been the subject of our research so far. In the next section, we will confer the details of this approach 

and discuss the results. 

3. EXPERIMENTATION AND RESULTS 

An end to end communication system was simulated, according to Fig. 2. The performance of the equalizer at 

the receiver, which was based on BP, was analysed. The equalizer was targeted to be optimized, as BP has high 
complexity due to the reason discussed in the previous section.  

4-QAM constellation, illustrated in Fig. 3, was chosen for the transmitter and the receiver. 

 

Fig. 3. The used constellation in the experimentations. 

(12) 

(13) 
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Fig. 4. Bit error rate (BER) plot of the communication system, based on BP, over different constellations . 

The initial BP, whose result is illustrated in Fig. 4, was based on a blueprint of SSFM with 1000 segmentation, 

and therefore it must iterate over 1000 steps. We reduced the number of steps and analyzed the performance. 

The results are brought in Fig. 5.  

It is clear from Fig. 5 that the performance has dramatically been diminished. At this point, the question was 

whether or not we can make a NN approximating the 1000-step BP via a lower complexity. 

After many efforts, we succeeded in devising a neural network that approximates the 1000-step BP (highest 

complexity), with the accuracy of 99.9% in noiseless condition, while having 87.3% lower complexity. The mean 

absolute error (MAE) of this NN is 8.0827 × 10−5. This NN also works well in noisy environments. The bit error 

rate (BER) of the system, based on this NN equalizer, in a noisy environme nt, is illustrated in Fig. 5. This plot 

also compares the NN with all the versions of BP (the reduced ones and the pure).  

Many mathematical solutions were applied to devise this NN. Also, the regularization was performed such that 

the NN produced almost the same history graph of train and test error, as it is illustrated in Fig. 6. This 

guarantees that the NN is well applicable to untested data. 

4. CONCLUSION 

We provided a neural network approximating Backpropagation with high accuracy while having considerable 

lower complexity. We conferred the potential of this approach for contributing to achieving a higher AIR in 

optical fiber communication systems. We also debated the role of machine learning in reaching higher AIRs in 

communication systems, and we reviewed a number of papers taking advantage of NNs brought about this 

result. We furthermore showed that a more accurate NN can be achieved in case of assigning more processing 

power for training the NN.  
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Fig. 5. Bit error rate (BER) plot of the system based on the specified equalizers (BP in the different number of steps and the NN).  

 

Fig. 6. a) The history of the calculated loss on the train set during training. b) The history of the calculated loss on the test set during 
training.  
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