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Executive Summary 

In this deliverable, we define the practical challenges of interest that the ESRs are (and have been) planned to 

tackle in the scope of the project. Since ESRs follows their individual research direction according to the work 

packages, we defined different experimental plans for each ESR. In the current report, the experimental plans 

are detailed based on the progress of ESRs in their research. We present detailed experimental plans for ESR 2 

(Vinod) and ESR 3 (Stenio) as they had so far a successful progress in their research. Due to the late hiring, the 

other two ESRs, ESR 1 (Vlad) and ESR 4 (Abtin), are still in early research stages. We defined their experimental 

plans as well, but more details will be given in the next deliverables.  

ESR 1 is investigating on the machine learning (ML)-based approaches to improve the performance of 

nonlinearity mitigation (NLM) techniques in fibre-optic communication systems, in particular the performance 

of nonlinear frequency-division multiplexing (NFDM) systems where the information in encoded into the 

nonlinear Fourier spectrum. In this report, we overview the practical challenges and define the next 

experimental plans to address these challenges. 

ESR 2 follows his research on the impairments mitigation of NFDM systems. NFDM systems are severely 

suffered from some practical impairments such as non-ideal fiber amplification, and non-ideal transceiver’s 

characteristics. ESR 3 has been working on some solutions to mitigate such impairments. we briefly review the 

challenges in designing NFDM experiments and define our plans for compensation of the nonlinear distortion 

arising from transceivers. 

ESR 3 is investigating on Reservoir Computing (RC) as a new tool for implementing signal processing in the 

optical domain. It follows the architecture of a recurrent neural network (RNN), which allows the process of 

time-dependent signals. The advantage of RC over RNNs is that the recurrent connections are determined 

randomly (called reservoir) and do not require any changes/training over time. This characteristic makes RC an 

excellent option to be used in photonic systems. In this report, we define our experimental plans to boost the 

performance of some RC structure in practice. 

ESR 4 is working on machine-learning solutions for optical fiber communications, including NFDM systems. The 

research direction is to use neural networks and kernel methods for mitigation (equalization) of the 

impairments of optical fiber. The plan is first to develop such solutions in simulation environment for nonlinear 

Schrodinger’s (NLS) equation, the basic model for an optical fiber. Then, we verify the developed solutions on 

the real fiber and assess their performance on a high-speed transmission experiment.  
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1 ESR 1 

The optical fibre channel is a dispersive-nonlinear channel [1]. The developments in the coherent detection 

hardware and the digital signal processing (DSP) algorithms enabled the effective mitigation of the linear 

transmission impairments, notably, chromatic dispersion (CD) and polarization-mode dispersion (PMD) [2]. 

Therefore, the fibre nonlinear response, especially, Kerr nonlinearity, and the amplified spontaneous emission 

(ASE) noise generated by optical amplifiers (OA) are currently the bottlenecks of the performance of fibre-optic 

communication systems [3, 4]. In more details, Kerr nonlinearity distorts the signal waveform proportionally to 

its local intensity, by thus effectively imposing the upper limit on the signal power and, hence, on signal-to-

noise ratio (SNR). Consequently, the mitigation of the nonlinear distortion improves the system performance 

by unlocking higher SNRs. Several nonlinearity mitigation (NLM) methods have been proposed up to date [5-7], 

including some recent approaches based on machine learning (ML) [8–11]. The conventional NLM methods 

have a general problem - they don’t take nonlinearity into account during system design but consider it as a 

perturbation needed to be suppressed by the NLM methods. 

Another view on the nonlinearity mitigation is taken by nonlinear Fourier transform (NFT)-based approaches 

[12–18]. In this paradigm, Kerr nonlinearity is considered as the essential property of the channel, not as a 

destructive phenomenon. The lossless nonlinear Schrödinger equation (NLSE) which governs the propagation 

of an optical pulse in an ideal optical fiber can be exactly solved using the NFT [19]. The nonlinear spectral 

components which are obtained by NFT of a signal do not interfere during propagation through a lossless fiber 

[13,19]. Further, the NFT enables mitigation of the transmission impairments by simple equalization. These 

capabilities of the NFT to simplify the fiber-optic communication have encouraged new type of transmission 

techniques that are based on NFT. Nonlinear frequency division multiplexing (NFDM) techniques are 

transmission techniques that encode data in the nonlinear spectrum [13,15]. As the NFT requires lossless fiber 

model, NFDM techniques are challenged due to the presence of loss in real fibers (and accordingly ASE noise 

of amplifiers) [20]. Reliable ways of countering these distortions in NFDM systems are of high demand. Lossless 

path-averaged (LPA) model [20], the optimization of modulation format [21], and the application of advanced 

decoding schemes [22] have been proposed to deal with the impact of losses and ASE noise.  

1.1 RESEARCH AND EXPERIMENTAL PLAN 
The application of ML approaches was recently found especially beneficial to solve the mentioned issues [23–

27]. Nonetheless, not so many works have attended the usage of ML in the NFT context. Within this project, 

we are going to utilise the expertise of the previous approaches, when ML and NFT were employed together, 

and to extend this paradigm to more capacity-efficient systems. We plan to further tune the system parameters 

by means of advanced optimisation techniques, including machine learning approaches. Moreover, we are 

going to develop the novel decoding technique based on ML. Particularly, we will consider both numerically 

and experimentally the long-haul NFDM system, similar to the one considered in [17]. The considered system 

(Figure 1) will use both discrete and continuous NFS as the information carriers. Noteworthy, the system [17] 

did not utilize any ML-based elements. Conversely, we will replace some elements of the aforementioned 

scheme with the ML units, which are supposed to combine the reduced complexity with the improved 

performance metrics. Besides, the other ML-based nonlinearity mitigation methods will be considered. 
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Figure 1: The NFDM system under consideration. The figure is taken from [17]. 

2 ESR 2 

Nonlinear Fourier Transform (NFT) is developed based on nonlinear Schrödinger equation (NLSE) which models 

propagation of an optical pulse in a lossless optical fiber.  Since the practical fiber are lossy, the LPA model is 

applied in order to make the fiber model suitable for NFT and NFDM systems. In LPA model the lossy 

propagation model is approximated to a lossless propagation (in a fiber with different nonlinear parameter) 

[20]. Many NFDM systems were demonstrated in the past by using LPA model. The error associated with the 

path-average approximation gets stronger at high power, bandwidth and longer spans. Recently, it was shown 

in simulations that the path-average model can be avoided by designing the NFDM systems using dispersion 

decreasing fibers (DDFs) [28]. The simulation results present potential advantages of using DDFs in NFDM 

systems. In this report, first, we briefly review the proposed approach to address the challenge in NFDM 

systems due to the fiber-loss. Then, we describe some of the challenges in the designing the experiments and 

possible approach to address them. 

2.1 NFDM SYSTEM USING DDF 
It is well-known that the lossless fiber-model belongs to the class of integrable nonlinear evolution equations 

and can be solved exactly using NFTs [19]. In the presence of fiber-loss, which is always the case in real fibers, 

the fiber-model is not exactly solvable using NFTs [20]. It was shown that if a fiber with varying parameters is 

designed then for certain conditions the fiber-model will become integrable [29]. Thus, the fiber-model can be 

exactly solved using NFT. The propagation of a pulse 𝑄(ℓ, 𝑡) in such a fiber can be modelled using the NLSE 

with varying dispersion and nonlinear parameters [29] 

𝜕𝑄

𝜕ℓ
+ 𝑖

𝛽2(0)𝐷(ℓ)

2

𝜕2𝑄

𝜕𝑡2
− 𝑖𝛾(0)𝑅(ℓ)|𝑄|2𝑄 = −

𝛼

2
𝑄. (1) 

where ℓ represents the propagation distance and 𝑡 is retarded time. The parameters 𝛼, 𝛽2 and 𝛾 are the loss, 

dispersion and nonlinear parameters respectively. 𝛽2(0)  and 𝛾(0)  are the initial values (i.e. at ℓ = 0  ) of 

dispersion and nonlinear parameters. 𝐷(ℓ)  and 𝑅(ℓ)  are the normalized profiles that introduces length 

dependent variation in the dispersion and nonlinear parameters. Here, we consider the case of anomalous 

dispersion (i.e. 𝛽2(0)𝐷(ℓ) < 0 ). For the case of fiber-links with lumped amplification, above condition can be 

satisfied if the following relation holds 

𝛽2(ℓ)

𝛾(ℓ)
= A 𝑒−𝛼ℓ, (2) 

Where 𝛽2(ℓ) =  𝛽2(0)𝐷(ℓ), 𝛾(0) =  𝛾(0)𝑅(ℓ) and 𝐴 = 𝛽2(0) 𝛾(0)⁄ .  
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Such fibers with varying parameters were designed earlier for classical-soliton based systems [30,31]. The 
profile of such a fiber is shown in Figure 2, for 𝛼 = 0.2 dB/km and for realistic values of fiber radius and 
dispersion and nonlinear parameters at ℓ = 0. 

 

Figure 2: Parameters of dispersion decreasing fiber of 80 km length. 

An NFDM system designed using dispersion decreasing fiber avoids the approximation error due to LPA model, 
hence, have performance advantage which was shown in simulations. In order to validate the simulation results 
using experiments, we need fibers for which condition given in [28,29] is satisfied.  

2.2 RESEARCH AND EXPERIMENTAL PLANS 
In order to see the actual advantage of using DDFs, the transmission experiments need to be planned properly. 

The gains could be visible in experiments if the NFDM system is designed with longer span. However, the DDFs 

currently available in-house are of very short-lengths (around 1 km). Furthermore, it is crucial for NFDM 

systems that the signal generated at transmitter should be free from distortions. In experimental systems, the 

signal generated at transmitter suffers from distortions that should also be minimized. The distortions at 

transmitter comes from various factors like limited bandwidth and nonlinear response of components. There 

are various methods to pre-distort waveform digitally in order to suppress the undesired response of the overall 

transmitter [32-36].  Volterra series are well known for modelling nonlinear systems with memory. It can be 

used to model the cumulative effect from the transmitter devices. One of such technique is indirect learning 

architecture (ILA) which is shown in Figure 3 [36].  

 

Figure 3: Schematic of indirect learning architecture. 
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In this approach, the inverse model of transmitter is obtained iteratively using some optimization algorithm 

such as recursive lease squares. A pre-compensated sequence      is obtained from the input sequence x[n] 

by applying the pre-compensation Volterra filter 𝑔 

    = 𝑔 ∗   =   ∑ ∑ 𝑔𝑚,𝑝 𝑖
𝑝  − 𝑚 

𝑀𝑝+1
2

𝑚=−
𝑀𝑝−1

2

𝑃

𝑝=1

(3) 

where 𝑃 denotes the nonlinearity order, 𝑀𝑝 denotes the memory of the filter at 𝑝th order and 𝑔𝑚,𝑝  is the 

Volterra kernel coefficient of the corresponding memory tap 𝑚 and nonlinear order 𝑝.  The signal at the output 

of system is      which is impaired with transmitter distortions (assuming receiver is ideal) 

     =   ℎ ∗     . 

 These output signal samples      are used for training the pre-compensation filter 𝑔. The training model is 

updated iterative in order to minimize the error 

𝑒   =       −       . 

The error 𝑒    approaches to zero when the inverse of transmitter model is obtained i.e. 𝑔 = ℎ−1. Once the 

error is minimized, a pre-compensation filter is obtained which compensates the transmitter distortion. 

At Nokia Bell labs, we propose the following experiment plans: 

1. Earlier, we have shown performance advantage in an NFDM system designed dispersion decreasing 

fiber in simulations [28]. We want to perform experiments with it but the in-house available fiber does 

not fit with the requirement. This experiment plan depends upon the availability of the required fiber. 

2. We plan to work on the compensation of transmitter nonlinearity by building on the existing 

approaches. We focus on achieving a greater performance advantage in overall end-to-end system by 

tuning the existing approaches as well as by using novel optimization algorithms.  

3. Further, we will explore the use of machine learning techniques such as deep neural network in order 

to obtain performance advantage with reduce complexity in comparison to the conventional methods. 

3 ESR 3 

Reservoir computing (RC) is a new tool for implementing signal processing in the optical domain. It follows the 

architecture of a recurrent neural network (RNN), which allows the process of time-dependent signals. The 

advantage of RC over RNNs is that the recurrent connections are determined randomly (called reservoir) and 

do not require any changes/training over time. This characteristic makes RC an excellent option to be used in 

photonic systems. However, the relation between the RC and optical fiber impairments is not clear. To get a 

better grasp of its functionality, we have started the investigation with a digital implementation of RC aiming 

at signal equalization for direct-detection intensity-modulated optical transmission systems. To further 

improve results, we also proposed the use of RC together with an optical structure to pre-process the signal. 

This optoelectronic implementation uses an arrayed waveguide grating (AWG) to split the signal and greatly 

improved the performance of the system, as proved by simulations. 

The RC is divided into two components. The first part is the reservoir, an RNN, which is initialized with random 

weights and interconnections and kept fixed. Its function is to transform the input signal from one state to 
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another, through nonlinear dynamics. The second is the weights that connect the reservoir's output with the 

readout functions. It is the only part that is trained and transforms the reservoir's output into the desired signal. 

 

Input layer

x1

x2

xN

...

Reservior Output layer

  

  

  

...

Win

Wout

W

Wout

 

Figure 4: Representation of a reservoir topology. 

 

Figure 4 illustrates the structure of reservoir computing used in the numerical results. The input signal goes 

into the reservoir with a linear transformation given by Win (defined randomly). A bias is typically added to 

make the signal operate in different regions of the nonlinear function (the bias' weights are considered in Win). 

The square matrix W defines the number of neurons and how they are connected. The output layer has two 

different sets of weights — first, the connection between the input and the readout functions. Second, the 

connection between reservoir and readout functions. Both weights are concatenated and described by Wout. 

Equation 1 describes the space-state equations for this structure. 

    = tanh(𝑊𝑖𝑛 ∙ 𝑢   + 𝑊 ∙    − 1 ) (4) 

    =  𝑊𝑜𝑢𝑡 ∙  𝑢   ;       

3.1 RESEARCH AND EXPERIMENTAL PLAN 
Figure 5 shows the simulation setup to validate the RC for short-reach transmission. An OOK signal with 32 GBd 

and 218 random symbols are transmitted with RRC (0.1 roll-off) as pulse shaping. The digital signal is directly 

mapped onto the optical domain by assuming an ideal linear transformation. The MZM is assumed ideal to 

neglect its nonlinear transfer function as a source of degradation and to focus solely on the impact of CD. With 

that in mind, we only simulated the CD impairment in the SSMF transmission (D = 16.4 ps/nm/km). An additive 

white Gaussian noise is used to simulate the optical pre-amplifier of the receiver. The noise variance and fiber 

length (accumulated CD) are swept to meet the target SNR and distance. The AWG is simulated as Gaussian. 

The signal is then detected by photodetectors that are modeled with an ideal square-law transformation 

followed by a Bessel filter with the bandwidth matching the electrical bandwidth of the slices. Each of the 

signals is converted to the digital domain with an ideal transformation and used as an input for the reservoir 

computing. 
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Figure 5: Simulation setup description. 

 

Our preliminary numerical analysis of the setup of Figure 5 already shows significantly transmission reach 

improvement compared to commonly used techniques such as maximum likelihood sequence estimation or 

feed-forward neural networks. 

The next step of this process is to work on the physical implementation of the concepts studied numerically. In 

Nokia Bell Labs, we are going to work with an optoelectronic reservoir computing system to validate the 

simulation results obtained up to now. This experiment is the first step to validate this tool because it is a digital 

implementation with real numbers. After this first experiment, we will consider extending the work to all-

optical or optoelectronic implementation of RC. All-optical and optoelectronic implementation are of particular 

interest as they can also be applied to NFT systems, where we need to process the complex signal. This is one 

of the overall goals of the project. We will rely on the experimental testbeds available at Nokia Bell Labs both 

in terms of short-reach intensity-modulated transmission systems, as well as their coherent NFT-based 

transmission systems. The following steps are being considered: 

1. Apply equalization through digital RC applied to the transmission of on-off keying (OOK) and 4-pulse 

amplitude modulation (PAM) signals. The experimental waveform digitized after fiber transmission will 

be equalized through RC and the impact of the reservoir’s properties on the signal performance will be 

studied. 

2. The scheme of Figure 2 with an optical pre-processing stage (array waveguide grating or parallel filters) 

followed by a bank of photodetectors will be implemented. The digitized outputs of the detectors will 

be injected into the reservoir and the signal quality will be analyzed. 

3. More complex optical pre-processing stages will be considered, including nonlinear transformations, 

e.g., through saturation in semiconductor optical amplifiers or injection-locking of laser dynamics. 

4. The extension of the equalization scheme for coherent transmission, including both conventional 

signaling schemes and nonlinear frequency division multiplexing (NFDM) signals will be considered. 

This research direction will be pursued in parallel to the characterization of intensity-modulated 

systems using direct detection. In particular, we will consider RC to provide equalization and phase 

noise mitigation for NFDM transmission using discrete spectral modulation. 
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4 ESR 4 

There is a high research interest in recent years in applying deep learning techniques to optimize 

communication systems. In some cases, a specific part of communication system such as coding, pre-

equalization or post-equalization is optimized using deep learning and artificial neural networks (ANN). To 

name some, a low-complexity fiber nonlinearity compensation block was designed using ANNs in [9,10]. In [37], 

DNN is used to optimize the constellation format for encoding data in long-haul optical transmission when a 

bitwise soft-decoder is used at receiver. ANNs have also been considered for the equalization module in short 

reach optical access networks [38]. However, the approach of designing and optimizing the communication 

system independently on a module-by-module basis can be sub-optimal in terms of the end-to-end 

performance. The other direction is to optimize the end-to-end performance of a system. It is proposed in 

[39,40] to optimize the complete communication system from the transmitter to the receiver. Such 

autoencoder systems, implemented as a single deep neural network, have the potential to achieve the optimal 

end-to-end performance.  

End-to-end optimization based on DNN has gained a recent high interest in communication scenarios in which 

the optimal communication technique is not known or prohibitive due to complexity reasons. Due to the 

dispersive and nonlinear nature of optical fiber, optical fiber transmission is an example of such scenarios. 

Different methods for the end-to-end optimization have been investigated for so-called short reach IM/DD 

optical systems in [8,41-44]. It has been shown that those optimized systems can reach much higher bit rate 

and spectral efficiency than the classical systems. However, there are no publication yet, to the best of our 

knowledge, for end-to-end optimization of high-performance long-haul coherent optical fiber systems. 

4.1 RESEARCH AND EXPERIMENTAL PLAN 
We are investigation the DNN solutions for end-to-end optimization of long-haul coherent optical fiber 

systems. In the first step as a proof of concept, we are working on modelling nonlinear Schrödinger equation 

(NLSE) by a DNN. The NLSE is a basic model for an optical fiber. Next, we will verify our DNN models 

experimentally using the existing coherent system in Nokia Bell Labs. We will next take the following steps: 

1. We improve the current End-to-end solutions in terms of complexity and convergence. It means we 

will test and compare the new algorithms for DNN optimization. For instance, most of the algorithms 

were developed for DNN with real valued weights while in communication systems, we are working 

with complex valued signal. We are investigating the possible further gains if we design complex-

valued DNN instead of real-valued DNN.  

2. We propose new end-to-end solutions based on different types of DNN and applying signal 

transformations like nonlinear Fourier transform. After verification in simulation, the plan is to test 

our proposal in experimental loop of Nokia Bell Labs. 

5 SUMMERY 

In this deliverable, we described the practical challenges of interest that the ESRs have been planned to tackle 

in the scope of FONTE. We presented the research direction and the following experimental plans for each 

ESRs. The experimental plans are defined based on the progress of ESRs in their research. 
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