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Executive Summary 
Wavelength-division multiplexing (WDM) and nonlinear frequency-division multiplexing (NFDM) are the two 
multiplexing schemes for optical fiber communication. In WDM, which is the same as linear frequency-division 
multiplexing (FDM) in radio communication systems, user’s signals are linearly multiplexed in the frequency 
domain. However, in nonlinear channels, such as optical fibers, linear multiplexing causes interactions. To 
address this, NFDM has been proposed. In NFDM, which is based on the nonlinear Fourier transform (NFT), 
users’ signals are multiplexed in the nonlinear Fourier domain and propagate independently in a lossless 
noiseless optical fiber modeled by the nonlinear Schrödinger (NLS) equation. 

In light of recent notable progress in these schemes, ever-increasing attention has been attracted to this area. 
In this report, mathematical principles underlying modulation and multiplexing in linear and nonlinear 
communication systems are reviewed. 
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1. MATHEMATICAL PRELIMINARIES

Communication systems are designed based on mathematical principles. In this section, a number of 
mathematical theorems underlying the principles of modulation and multiplexing for communication systems 
are discussed. 

Definition 1.1. An inner product on a vector space ܧ over a field ܭ is a function <. , . >∶ 	ܧ × 	ܧ →  satisfying ܭ
the following properties [1]: 

a) ,ݔ	∀ 	ݕ ∈ >,ܧ ,ݔ ݕ >	=	< ,ݕ ݔ >തതതതതതതതതതത;
b) ,ݔ	∀ ݕ ∈ ,ܧ ߣ		∀ ∈ 		ܭ < ଵݔଵߣ + ,	ଶݔଶߣ ݕ >	= 	 ଵߣ < ,ଵݔ ݕ > ଶߣ	+ < ,ଶݔ ݕ >;
c) ݔ∀ ∈ >,ܧ ,ݔ ݔ >	≥ 0			&	 < ,ݔ ݔ >	= 0			iff.			ݔ = 0.

An inner product space is a vector space together with an inner product. 

Definition 1.2. A Hilbert space ܪ is a real or complex inner product space that is also a complete metric space 
with respect to the distance function induced by the inner product [1]. 

Theoream 1.1. Every Hilbert space has an orthonormal basis [1]. 

Theoream 1.2. The set of all finite energy functions forms a Hilbert space over field ℂ with the following inner 
product [1]: 

< ,(ݐ)݂ (ݐ)݃ >	= න 	ݐതതതതതത݀(ݐ)݃(ݐ)݂
ାஶ

ିஶ
. 

Therefore, every finite-energy function ݂ in ℂ can be decomposed into an orthonormal basis {	߮ଵ, ߮ଶ, … } of 
the space as the following: 

(ݐ)݂ =෍ݏ௞߮௞
௞

 ,	(ݐ)

where ݏ௞ ∈ 	ℂ	are scalars. 

For the given Hilbert space by (1), the following set serves as orthonormal basis: 

ݐ)ܿ݊݅ݏ} − ݇ ଴ܶ)}௞ୀିஶାஶ ,					 ଴ܶ =
1
ܤ
	. 

However, since the interval in (1) is [−∞, +∞], if such an operation is applied in practice, it would be too time 
consuming. To address this, given in communication, signals are compactly supported, the Hilbert space ்ܪ  of 
signals that are periodic with period T and the following inner product is considered [2]: 

< ,(ݐ)݂ (ݐ)݃ >	= ଵ
்
ධ ݐതതതതതത݀(ݐ)݃(ݐ)݂
்

଴
	. 

An orthonormal basis of ்ܪ  is 

{cos(
ߨ2݇
ܶ

,(ݐ sin(
ߨ2݇
ܶ

௞ୀଵାஶ{(ݐ 	. 

Modulation is the process of mapping symbols ݏ௞ to function ݂(ݐ). This can be done by expanding a signal in 
the orthonormal basis of the space, according to (2). The merit of this approach is enabling the receiver to 

(1) 

(2) 

(3) 

(4) 

(5)
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decode the transmitted symbols simply by projection of the received signal into the orthonormal basis 
(demodulation). In an identity channel ܻ = ܺ, this can easily be done as follows. 

Let the signal ܺ(ݐ) = ∑ ௡(ݐ)௞߮௞ݏ
௞ୀଵ  be transmitted. The receiver can easily demodulate the symbols ݏ௜  as 

follows: 

పෝݏ =	< ܻ, ߮௜ > 
	=	< ܺ, ߮௜ >	

=	< ෍ݏ௞߮௞
௡

௞ୀଵ

, ߮௜ > 

	= 	෍ ௞ݏ
௡

௞ୀଵ

< ߮௞, ߮௜ >	

= ௜ݏ 	. 

The schematic diagram of a communication system for the single-user case is illustrated in Fig. 1.  

Multiplexing is similar to modulation, but for combining user’s signals in multi-user channels. In multiplexing, 
the goal is to combine users’ signals in a way that at the receiver, they can be straightforwardly decomposed 
(demultiplexing). This can easily be done by choosing the basis supported on disjoint frequency bands of the 
channel and combining the signals ௜ܺ  of each user ݅  as ෠ܺ(݂) = ∑ పܺ෡௡

௜ୀଵ (݂) , where ෠ܺ(݂)  is the Fourier
transform of ܺ(ݐ) . 

However, communication channels in real-world are not identity channels. They are subject to noise and 
distortion, depending on the modulation and multiplexing scheme. In the next section, we will review these 
distortions within discussing transmission over linear channels. 

Fig. 1. The schematic diagram of a communication system for the single-user case 

2. TRANSMISSION OVER LINEAR CHANNELS

As mentioned in the previous section, a channel, depending on the adopted modulation and multiplexing 
scheme, may cause distortion in the signal. For instance, consider the canonical communication channel, the 
additive white Gaussian noise (AWGN) channel: 

(ݐ)ܻ = (ݐ)ܺ ∗ (ݐ)ܪ +  ,(ݐ)ܰ

(6) 

(7)
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where ܺ is the input signal, ܻ is the output signal, ܪ is the channel filter, ܰ is the white Gaussian noise, and ∗ 
denotes convolution. Using (2) and (6) we obtain 

௜ݕ =< ቌ෍ݔ௞߮௞(ݐ)
௞

∗ ቍ(ݐ)ܪ	 + ,(ݐ)ܰ	 ߮௜(ݐ) > 

= 	෍ݔ௞ < ߮௞(ݐ) ∗ (ݐ)௜߮,(ܶ)ܪ > +<
௞

,(ݐ)ܰ	 ߮௜(ݐ) >	, 

which results in: 

௜ݕ =෍ݔ௞ℎ௜௞
௞

+ ݊௜ = ௜ℎ௜ݔ + ෍ݔ௞ℎ௜௞
௞ஷ௜

ᇩᇭᇭᇪᇭᇭᇫ
ூ௡௧௘௥௙௘௥௘௡௖௘

+ ݊௜⏞
ே௢௜௦௘

, 

where ℎ௜ = ℎ௜௜ , and ℎ௜௞ =< ߮௞(ݐ) ∗ ,(ݐ)ܪ	 ߮௜(ݐ) > . If ݔ௞ s represent symbols of the user-of-interest, the 
interference in (9) is called inter-symbol interference (ISI), and if they represent symbols of other users, it is 
called inter-channel interference (ICI). As (9) depicts, three distortions are occurred, which can be categorized 
into two groups: deterministic and stochastic [5]. In the following, these distortions are conferred. 

2.1    STOCHASTIC DISTORTION 
Almost always there is noise in the channel. Noise is modeled by a probability distribution. As a result, they 
change the signal in a way that the exact final output cannot be determined prior to arrival, but only a prediction 
of it. For example, the thermal noise is the primary noise source in many channels which is modeled by a white 
Gaussian random process. 

Owing to the probabilistic nature of this process, which is represented by ݊௜  in (9), this distortion is called 
stochastic distortion. 

2.2   DETERMINISTIC DISTORTION 
In the absence of noise, given the mathematical model of the channel, the evolution of a signal in the channel 
can be calculated deterministically. For example, the evolution of signals in a lossless noiseless optical fiber 
obeys non-linear Schrödinger (NLS) equation [2]. From this point of view, the change that a channel, in the 
absence of noise, imposes on an input signal is called deterministic distortion. 

Deterministic distortion is divided into two parts. One part is a function of the symbol-of-interest/user’s signal, 
and the other is interference.  

2.3   INTERFERENCE 
As (9) depicts, the interference causes ݕ௞ to be dependent on all ݔ௜s rather than only ݔ௞, which makes the 
process of demultiplexing/demodulation more complicated. 

In a multi-user channel, given the multiplexing scheme, e.g., linear multiplexing ܺ = ∑ (∑ ௞߮௞)߮′௟௞௟ݔ , both 
inter-symbol interference and inter-channel interference can occur.  

(8) 

(9)
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This matter will be highlighted in the subsequent section, describing a couple of multiplexing schemes for 
nonlinear communication systems, such as optical fibers. 

3. TRANSMISSION OVER NONLINEAR CHANNELS

Based on the potential distortions that may occur in linear channels, effective linear schemes have been 
proposed for these channels. However, in nonlinear channels, such as optical fibers (which is modeled by 
nonlinear Schrödinger equation [2]), these linear schemes dramatically degrade the performance. Towards 
overcoming these issues, NFDM has been proposed, which is based on the nonlinear Fourier transform (NFT). 
In this section, the principles of these linear and nonlinear approaches in fiber-optic communication are 
reviewed. 

4.1    LINEAR FREQUENCY-DIVISION MULTIPLEXING IN OPTICAL FIBER 
Linear multiplexing in fiber-optics is represented by the wavelength-division multiplexing scheme. As the name 
indicates, wavelength-division multiplexing is the method of multiplexing disjoint wavelengths onto the same 
fiber. Conceptually, WDM scheme is the same as frequency-division multiplexing (FDM) for radio 
communication systems [6]. 

The transmitted signal over the channel in a WDM optical system is as follows [7]: 

,ݐ)ݍ ݖ = 0) = 	෍ ൭෍ݏ௞௟߮௟(ݐ)
ௐ்

௟ୀଵ

൱݁௝௞ଶగௐ௧
ே

௄ୀଵ

, 0 ≤ ݐ ≤ ܶ, 

where ݐ)ݍ, (ݖ ∶ 	ℝ × ℝ → 	ℂ is the complex envelope of the signal as a function of time ݐ and distance ݖ along 
the fiber (the transmitter is located at ݖ = 0), ߮௟(ݐ) are the basis in the time, ݏ௞ are the transmitted symbols, 
ܹ	 ≥ 	1/ܶ is the bandwidth per channel, and ܰ is the number of WDM channels. As a particular case, consider 
each user send an isolated pulse in the time interval [0, ܶ]. In this case, a single frequency is transmitted by 
each user in a bandwidth ܹ	 = 	1/ܶ and ݐ)ݍ, 0) 	= ∑ )	௞(0)expݍ

௝௞ଶగ௧
்

)ே
ଵ , where {ݍ௞(0)} are the Fourier series 

coefficients at ݖ	 = 	0. The evolution of Fourier series of this signal is 

,ݐ)ݍ (ݖ = ෍ e௝௞ఠబ௧(ݖ)௞ݍ 	,	 	߱଴ =
ߨ2
ܶ

ே

௄ୀଵ

.	 

The propagation of a signal in a lossless noiseless optical fiber can be modeled by the nonlinear Schrödinger 
(NLS) equation [2]: 

݆
ݍ߲
ݖ߲

=
߲ଶݍ
ଶݐ߲

+ ݍଶ|ݍ|2 + ,ݐ)݊ ,(ݖ

where ݊(ݐ,  .is (zero-mean) white circular symmetric complex Gaussian noise (ݖ

By substituting the periodic solution (11) into (12), the NLS equation in the discrete frequency domain is 
achieved [7]: 

݆
(ݖ)௞ݍ߲
ݖ߲

= 	−߱଴
ଶ݇ଶݍ௞(ݖ) + ,(ݖ)ଵݍ௞൫ܨ … , ൯ᇩᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇫ(ݖ)ேݍ

ூ௡௧௘௥௙௘௥௘௡௖௘

+ ݊௞(ݖ)ᇩᇪᇫ
௡௢௜௦௘

	, 

(10) 

(12) 

(11) 

(13)
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where 

௞ܨ = ᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ(ݖ)௞ݍଶ|(ݖ)௞ݍ|2
ௌ௉ெ

+ ଶ|(ݖ)௟ݍ|෍(ݖ)௞ݍ2
ଵஷ௞ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௑௉ெ

+ 2 ෍ (ݖ)௟ݍ(ݖ)௠ݍ
௠ஷ௞	&	௟ஷ௞

	௠ା௟ି௞ݍ
∗ ,	(ݖ)

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ிௐெ

 

and ݊௞(ݖ) is the noise coordinate in frequency. Therefore, as (13) and (14) illustrates, the signal evolution 
includes dispersion, self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) 
terms in the frequency domain. 

Despite all the advantages of WDM, these distortions diminish the performance of WDM dramatically. Towards 
overcoming these problems to achieve a higher achievable information rate (AIR), nonlinear frequency-division 
multiplexing scheme has been proposed. This scheme has been shown to have a higher AIR for a given 
bandwidth and average signal power. In the following part, this scheme will be briefly reviewed. 

4.2    NONLINEAR FREQUENCY-DIVISION MULTIPLEXING 

In this section, the principles of nonlinear frequency-division multiplexing is briefly reviewed [8]. 

Consider the channel: 

ܻ = ܴ(ܺ) + ܰ, 

where  ܴ:ℋ → ℋ  is a compact map on a separable complex Hilbert space ℋ with the inner product <,>; ܺ 
is the input signal, ܻ is the output signal and	ܰ is the Gaussian noise on ℋ. By projecting the signals and noise 
onto an orthonormal basis (߮ఒ)ఒ∈ℕ	of ℋ, the channel can be discretized as follows: 

{ܺ, ܻ, ܰ} = ෍{ ఒܺ, ఒܻ , ఒܰ}߮ఒ
ஶ

ఒୀଵ

,	

where ఒܺ, ఒܻ , ఒܰ 	 ∈ ℂ are the degrees-of-freedoms (DoFs). This leads to obtaining the following discrete model: 

ఒܻ = ఒఒܪ ఒܺ + ෍ ఒఓܺఓܪ
ఓஷఒ

ᇩᇭᇭᇭᇪᇭᇭᇭᇫ
௟௜௡௘௔௥	௜௡௧௘௥௔௖௧௜௢௡

+ ఒܰ ,

where ܪఒఓ =	< ܴ߮ఓ , ߮ఒ ߣ ,< ∈ ℕ. Contingent on the basis, interactions in (17) can represent ISI in time or ICI 
in frequency. 

Let ܴ be diagonalizable and have a set of eigenvectors which forms an orthonormal basis of ℋ. (e.g., the case 
where ܴ is self-adjoint). By this basis, interactions in (17) become zero and therefore it turns to 

ఒܻ = ఒܪ ఒܺ + ఒܰ , 

where ܪఒ = ఒఒܪ  is an eigenvalue of ܴ . This causes the channel to be decomposed into parallel independent 
scalar channels for 	= 	1, 2, … . 

The origin of the interactions in (17) is incompatibility between the used basis for the communication and the 
channel. To address this, orthogonal frequency-division multiplexing (OFDM) has been proposed. In OFDM, 
information is modulated in independent spectral amplitudes ఒܺ in order to eliminate ISI and ICI as follows.  

(14) 

(15) 

(16) 

(17) 

(18)
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Let ℋ = ௣ଶܮ ([0, (ܺ)ܴ and ܴ be the convolution map ([߁ = (ݐ)ܪ	 ∗  The eigenvectors and eigenvalues of .(ݐ)ܺ	
ܴ are 

߮ఒ(ݐ) =
1
߁√

݁ି௝ఒఠబ௧ ,	 	߱଴ =
ߨ2
߁
, 

and ܪఒ = 	ℱ(ܪ)(߱ߣ଴).	In this way, convolution is mapped to a multiplication operator, as in (18), by using the 
Fourier transform, in which ఒܺ, ఒܻ and ఒܰ  are Fourier series coefficients. It can be seen that ISI and ICI do not 
exist in the Fourier basis. 

NFT and NFDM are reviewed in [8] in analogy with OFDM. Let ܳ(ߣ, ,ݐ)ݍ be the NFT of (ݖ  .ݐ with respect to (ݖ
As a property of NFT,  

ܳ(λ, ℒ) = ,λ)ܪ ℒ)ܳ(λ, 0), 

if ݐ)ݍ,  propagates in NLS (12) with the noise set to zero [8]. In (20), ℒ is the distance where the receiver is (ݖ
located, and ܪ(λ, ℒ) = exp	(−݆4λଶℒ) . Therefore, similar to the Fourier transform, which converts a linear 
convolutional channel into a number of parallel independent channels in frequency, NFT converts the noiseless 
nonlinear dispersive channel (modeled by NLS), into a number of parallel independent channels in nonlinear 
frequency. In NFDM, information is modulated in independent spectral amplitudes ܳ(ߣ)  for every ߣ . In 
consequence, ISI and ICI become simultaneously zero for all users of a noiseless multi-user channel. As a result, 
as opposed to WDM, the NFDM AIR is infinite in the deterministic model at any non-zero power. In addition, in 
practice, it has shown that NFDM has a higher AIR than WDM for a given power and bandwidth, in an integrable 
model of the optical fiber in the defocusing regime [8]. The comparison between these schemes presented by 
[8] is illustrated in Fig. 2.

Fig. 2. Comparison between the AIRs of NFDM and WDM, and the capacity upper bound [8]. 

(20) 

(19)
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4. CONCLUSION

After presenting the mathematical basis of modulation and multiplexing in communication systems, in this 
report, we reviewed the principles of linear modulation and multiplexing in linear and nonlinear channels 
alongside their corresponding distortions. We showed that WDM, despite some advantages, suffers from inter-
channel nonlinear interactions, which significantly limit its performance. The Interactions from many of which, 
NFDM do not suffer. 

APPENDIX: SPLIT-STEP FOURIER METHOD (SSFM) 
As discussed, the signal evolution in optical fibers can be modeled by the NLS equation. It has been shown that 
NLS can be computed by the split-step Fourier method [9]. Briefly describing, in SSFM, both space and time are 
discretized into {ݖ଴, ଵݖ , … ,଴ݐ} , {௄ݖ ଵݐ , … ,  ,.௅ିଵ}, respectively (the values in both sets are uniformly-spaced, i.eݐ
௞ݖ = ∆௭݇ and ݐ௟ = ∆௧݈), and the evolution of ܽ(ݖ) from the position ݖ = 0 to position ݖ	 =	 ∗ݖ  is computed 
recursively as follows [9]: 

(௞ାଵݖ)ܽ = 	ℱିଵܦ௅ℱܦே (௞ݖ)ܽ	 + 	,(௞ାଵݖ)݊

where ℱ is the Fourier transform, ܽ(ݖ௞) is the ܮ × 1 length-vector of sample values ܽ(ݖ௞, ,(௟ݐ ݈ = 0,1,… , ܮ −
1, at position ݖ௞ , and ݊ is the Gaussian noise ܮ × 1 length-column-vector. ܦே is a diagonal matrix with entries: 

݁௝ఊ|௔(௭ೖ,௧೗)|మ∆௭, ݈ = 0,1,… , ܮ − 1, 

where ߛ is the nonlinearity parameter. ܦ௅  is a diagonal matrix with entries: 

݁ି௝൬
ఉమ
ଶ ൰௟

మ/(௅∆௧)మ∆௭, ݈ = 0,1,… ,
ܮ
2
− 1,

݁ି௝൬
ఉమ
ଶ ൰(௅ି௟)

మ/(௅∆௧)మ∆௭, ݈ =
ܮ
2
,… , ܮ − 1, 

where ߚଶ is the dispersion parameter. 

During the previous weeks, we implemented SSFM in Python. 
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