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Executive Summary 
D3.1 Survey of machine learning algorithms for optical performance monitoring  

An incredible 4.8 zettabytes of total yearly IP traffic data has been predicted by Cisco for 2022 [1]. New 
applications of internet of things, the increasing number of smartphones, Ultra High Definition (4K) streaming 
videos and many other applications are driving the necessity for higher transmission rates to support this 
increasing need for data. Since fiber-optic communications are the backbone of the telecommunications 
systems, new solutions to cope with this ever-increasing need for transmission speed are critical. 

Nowadays, nonlinear effects in optical fibers are one of the major limiting factors for optical communications. 
Different technologies have attempted to address these impairments for optical transmission. Nonlinearity 
mitigation through digital signal processing (DSP)[2], optical phase conjugation (OPC) [3] and nonlinear 
frequency division multiplexing (NFDM) [4] are the most known topics in this area. Although great results 
show the increase of the transmission data rate and reach, the implementation costs of any of them are still 
prohibitive. It is also worth to mention that all the mentioned techniques require full knowledge of the fiber 
transmission parameters to work properly.  

Optical performance monitoring (OPM) techniques estimates the parameter of the optical fiber channel, 
which is required at multiples point along the link. The multiple uses of this technology imply the necessity of 
simpler and cheaper solutions [5].  

Machine learning (ML) techniques may help solve the fiber nonlinearities for optical transmission and OPM, 
potentially reducing implementation costs. ML tools has a broad area of application and are very well known 
for being extremely effective for classification problems, typically for image classification and speech 
detection. Nonetheless, ML implementations with central processing units (CPU) are suboptimal in terms of 
speed and power efficiency [6]. Considering the optical communication field, it also implies the necessity to 
convert the signal from optical domain to electrical/digital domain. In other words, an expensive solution. 
Alternatively, several researches using hybrid optical-electronic systems with reservoir computing (RC) [7, 8]  
and full optical neural networks (ONN) with programmable nanophotonic processor (PNP) have been 
demonstrated [6, 9].  Here, we review these algorithms and point out potential advantages and 
disadvantages.  
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1 RESERVOIR COMPUTING 
Optical fibre communications impairments such as chromatic dispersion (CD) and nonlinearities induced by 
Kerr effect are time-dependent. Whereas this is a challenging task to overcome in a common ML architecture, 
reservoir computing (RC) allows mitigating time-dependent impairments with the aid of recurrent 
connections. 

Recurrent neural networks (RNNs) have been shown to be universal approximators, considering a finite time 
trajectory of a given n-dimensional dynamical systems with appropriate initial conditions [10]. In other words, 
they may mitigate nonlinear optical impairments. Though highly attractive, RNN are very difficult to train. In 
order to simplify the training process, Jaeger [7] and Maass [8] developed, independently and at the same 
time, the idea of using a random distribution for the input and hidden layer of the RNN, leaving it untrained. 

The techniques that consists on leaving the recurrent network layer untrained received the name of RC, 
coined by Verstraenten et al. [11]. Figure 1 shows a schematic of a general RC topology. The idea is applying a 
nonlinear transformation which will map the input space to a higher-dimensional space, resulting in a 
dimensionality expansion that might be linear separable.  

 

Figure 1 – Schematic of a general RC. The blue arrows are the only weights trained. 

Considering the linear case, which can be obtained if there are enough independent projections from the 
reservoir, the solution of the optimal weights is the Moore-Penrose pseudoinverse 𝐴𝐴† of the matrix state A 
(obtained from the reservoir) [12]: 

𝐴𝐴† =  (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇 (1) 
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 =  �𝑌𝑌�𝐴𝐴†�𝑇𝑇 (2) 

 
Where the desired output is represented by 𝑌𝑌� and the weights of the output layer by 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜. 

To be able to apply RC in order to solve a time-dependent problem, one of the principal requirements is that 
the weights of the hidden layer need to be scaled to acquire a dynamical regime. In addition, considering 
that, there is no external input, the system should return to a quiescent state. If such requirements are 
satisfied, the reservoir experiences fading memory. In other words, an old information has less influence over 
time [12].  
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RC has the beneficious of a RNN without the challenge task of training all the weights of the reservoir. The 
feature of leaving the initialization of the reservoir untrained are an enormous benefit for a hardware 
implementation. 

2 OPTICAL NEURAL NETWORK  
Artificial Neural Network (ANN) is traditionally organized in layers with units called neurons. In each layer, a 
linear transformation (or a matrix multiplication) is applied followed by a nonlinear activation function. Figure 
2a shows a general ANN topology. It is well known that ANN with one hidden layer and linear output units 
can approximate arbitrary well any continuous function with sufficient number of neurons in the hidden 
layer. 

(a) (b) 

  
 

Figure 2 – (a) General schematic of an artificial neural network. (b) Building blocks for an optical neural network implementation. 

In order to implement any ANN with optical components, two different components are needed. One to 
implement the linear transformation, called optical interference unit (OIU), and other that applies a nonlinear 
function, called optical nonlinear unit (ONU) [6]. Figure 2b shows a schematic of the building blocks for an 
optical neural network (ONN).  

An ONU can be implemented using common optical nonlinearities such as saturable absorption [13]. An 
implementation of OIU needs to execute a matrix multiplication in the optical domain. The work of Michael 
Reck et al. [9] experimentally demonstrates an algorithm that implements any 𝑁𝑁 𝑥𝑥 𝑁𝑁 unitary matrix by using 
optical beam splitters with variable reflectivity. It is also possible to replace it by a Mach-Zehnder 
interferometer (MZI), which can be implemented using a programmable nanophotonic processor (PNP) – a 
silicon photonic integrated circuit fabricated in the OPSIS foundry [6]. Bringing these results together with the 
theory of singular-value decomposition (SVD) it is possible to build a cascade of MZI to implement any real or 
complex matrix multiplication operator. 

The SVD factorizes any rectangular matrix A as [14]: 

𝐴𝐴 =  𝑈𝑈Σ𝑉𝑉∗ (3) 
 
Where 𝑈𝑈 and 𝑉𝑉 are unitary matrices, Σ is a rectangular diagonal matrix with non-negative numbers and  𝑉𝑉∗ is 
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the conjugate transpose of 𝑉𝑉. 𝑈𝑈 and 𝑉𝑉 matrices can be optically implemented by using the algorithm 
demonstrated by Michael Reck et al. and Σ can be implemented using optical attenuators [6].  

By implementing an ONN instead of the classical ANN with CPUs, speed and power consumption can be 
greatly improved. The linear transformations can be done at the speed of light and detected at rates of 100 
GHz (photodetection rate) with minimal power consumption [6]. 
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